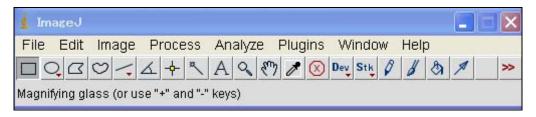
内部割れ画像を Image J で読み取る方法

Image J で読み取る作業の前につぎの画像処理を行ってください。

注:以下は森林総研の宇京斉一郎氏により取りまとめられた説明書を平成 22 年に森林総研加藤,広島総研の藤田,吉村が内部割れ読み取り用に変更したものです。

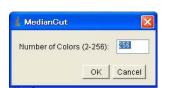

ペイント により画像の処理を行う

- ペイントを立ち上げ処理する画像 (Bmp 保存など)を開く。
- 2 ツールボックスから多角形 (多角形)を選択し、一番下の■を選択する。
- 3 画像内の割れの起点をクリックし、押したまま 次の折れ点に持っていく。3点目からは側点に マウスポインターを合わせて、クリックすると 自動的に線を結ぶ。
- 4 割れの個所を囲み終えたら、起点と終点を合わ せてダブルクリックをする。囲んだ部分が塗りつぶされる。
- 5 割れをすべて塗りつぶしたら、24bit の Bmp(ビットマップ)で保存する。なお、髄に集まる割れがY字状、V字状またはT字状になる場合は、割れを髄のところでそれぞれに分けておく。 髄割れはそのまま。Image Jの割れ判別では、Y字、V字やT字の外側の点を結んだ四角形を割れとして認識してしまう。
- 6 線を引き間違えた場合は、適当にダブルクリックし、割れとして塗りつぶす。Ctrl + Zを押すと間違えて塗った部分が消える。
- 7 保存した画像を Image J で読み取るのである。

Image J の使い方説明

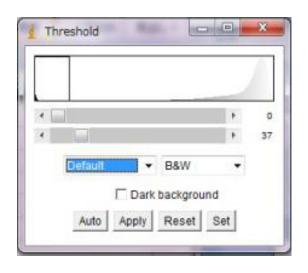
ステップ 1 二値化(カラー画像を白黒2色の画像に分ける)

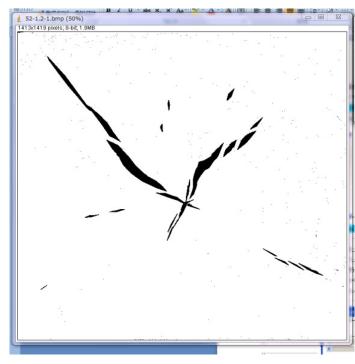
Image J を起動すると,下のようなウインドウが立ち上がる。


注:デフォルトは以下の説明では青かグレーか両方が示されているが、 実際に開くとどちらかで統一される。(本文中の図は ver1.42 のものです)

File → Open で目的の画像を開く。

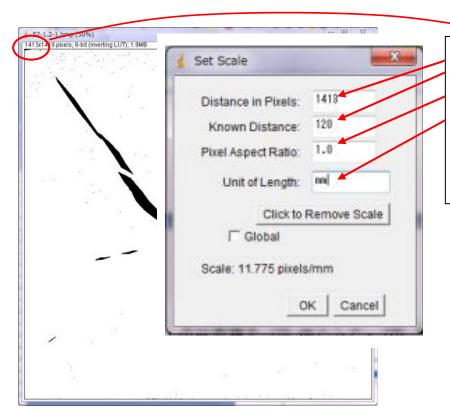
画像が開いたら、次に現在の画像のタイプを指定する。「 $Image \rightarrow Type$ 」で 8 bit Color をクリックし、Median Cut のウインドウがでたら、Number of colors(2-2.56)を 2.56 に指定し、OK をクリックする。もう一度「 $Image \rightarrow Type$ 」で今度は 8-bit をチェックする。カラー画像がモノクロに変化するのがわかる。Median Cut のウインドウは出ないこともある。





「<mark>Image → Adjusut → Threshold</mark>」を選択する。

上のように別ウインドウが立ち上がる。目で確認しながら、木材の部分が白く抽出されるように バーを調整する。ここでは 37 にした。木材の組織(仮道管)も穴とみなされてしまうが、これ を全部白にしようとすると、割れの部分も影響をうけてしまうのでほどほどにする必要がある (ここはどうしても経験則になる)。後で述べるが、面積を抽出するときに小さい粒は除外することが可能(たとえば 2pixel² 以下の面積はカウントしない等)なので、木材組織に由来する小さな粒はそれほど問題にならない。

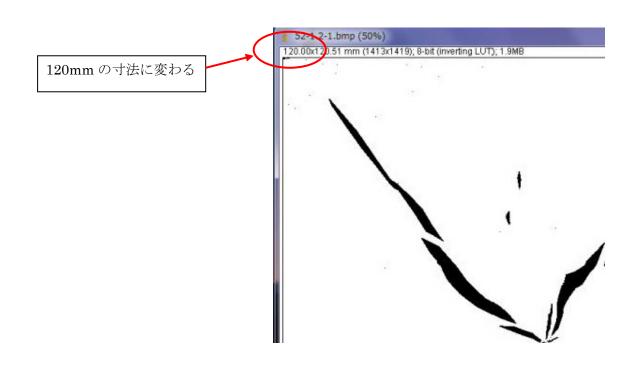


ステップ 2 内部割れ部分の面積を抽出・計算

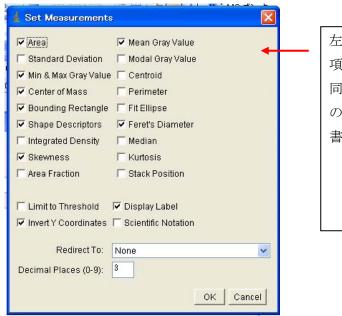
メニューで「 $Analyze \rightarrow Set Scale$ 」を選択する。

画像の左上に、例えば $1413 \times 1419 \cdot \cdot \cdot \cdot$ と表示される。1431 をこの値は木口面幅方向の長さに対応させる値として、 $\underbrace{\mathsf{Set\ Scale}}_{}$ のウインドウに \square 内のように入力する。

例の場合, Known Distance: 木口面幅を 120 mmとした。OK をクリックすると下の画面に変わり, 画面幅が mm 表示となる。

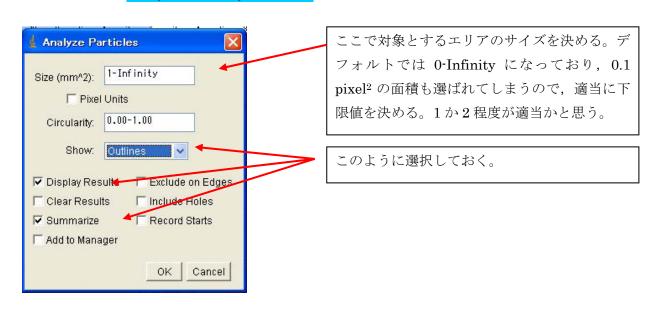

Distance Pixels: 1413
Known Distance: 120

Pixel Aspect Ratio: 1.0
Unit of Length: mm


を入力すると

Scale 11.775 pixels/mm と表示さ

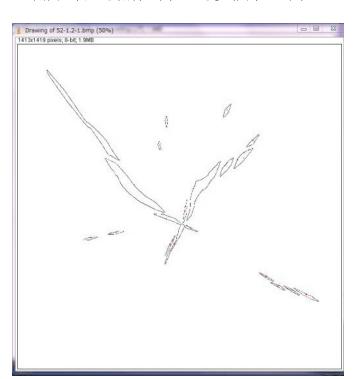
れる。 \rightarrow OK

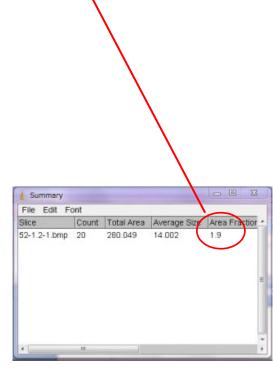


次にメニューで「Analyze → Set Measurements」を選択する。

左の Set Measurements ウインドウの必要項目にチェックを入れ OK をクリックする。同じ項目の出力でよいなら 2 回目からはこの操作は不要。(各項目については別の解説書を参照のこと。)

次にメニューで「 $Analyze \rightarrow Analyze Particle$ 」を選択する。


上に示したように、チェックして、OKを押す。


下のような、3つのウインドウが立ち上がる。

まず「Drawing of ○○」が抽出されたエリアの図。小さな赤字でナンバリングしてある。ここで抽出したエリアが示されるので、実際の写真と対比するとうまくいっているかどうか確認できる。

次に「Results」,これはそれぞれのエリアの面積(Area)が表示されている。このウインドウの メニューで File \rightarrow Save As とすると、エクセル形式で保存できる。これらは、一個一個のエリアについての結果を示している。

「Summary」ウインドウにすべてのエリアの総計が出ており、Area Fraction に抽出されたエリアが画面に占める割合が出ている。(図中 1.9%)

	Label	Area	Mean	Min	Max	XM	YM.	BX	BY	Width	Height	Circ.	Feret	Skew	Fer
	52-1.2-1.bmp	57.540	255	255	255	24.916	92.395	10.701	110.828	26.921	33.546	0.087	42.959	NaN	128
2	52-1.2-1.bmp	5.164	255	255	255	77.549	95.770	76.178	98.344	2.887	4.841	0.427	5.637	NaN	59.
3	52-1.2-1.bmp	2.402	255	255	255	55.099	91.706	54.607	93.758	0.934	4.246	0.351	4.254	NaN	93.
4	52-1.2-1.bmp	4.940	255	255	255	87.093	84.325	84.841	86.964	4.586	4.756	0.297	6.607	NaN	46.
5	52-1.2-1.bmp	2.056	255	255	255	52.511	82.853	51.890	84.416	1.189	3.227	0.383	3.237	NaN	94.
6	52-1.2-1.bmp	14.180	255	255	255	83.294	78.271	80.085	81.783	6.964	7.558	0.333	10.277	NaN	47.
7	52-1.2-1.bmp	10.682	255	255	255	77.404	74.923	74.904	78.217	5.011	6.794	0.355	8.442	NaN	53.
8	52-1.2-1.bmp	77.302	255	255	255	42.450	67.407	32.357	78.132	22.081	20.212	0.228	29.878	NaN	137
9	52-1.2-1.bmp	51.561	255	255	255	68.074	67.176	62.590	77.113	12.569	21.996	0.197	25.334	NaN	60.
10	52-1.2-1.bmp	4.948	255	255	255	62.108	58.338	61.146	62.590	1.699	8.323	0.180	8.494	NaN	78.
11	52-1.2-1.bmp	10.682	255	255	255	55.810	55.852	50.531	57.495	9.766	3.992	0.253	10.369	NaN	160
12	52-1.2-1.bmp	11.287	255	255	255	58.818	48.097	54.437	53.758	7.304	15.032	0.103	16.393	NaN	66.
13	52-1.2-1.bmp	2.539	255	255	255	63.837	52.042	61.911	53.248	4.586	2.378	0.228	4.834	NaN	161
14	52-1.2-1.bmp	3.065	255	255	255	36.432	50.441	33.546	51.125	5.605	1.274	0.241	5.748	NaN	12.
15	52-1.2-1.bmp	3.339	255	255	255	56.379	45.586	54.522	49.342	3.822	7.389	0.130	8.204	NaN	64.
16	52-1.2-1.bmp	2.712	255	255	255	26.839	48.304	24.374	49.087	5.180	1.359	0.256	5.315	NaN	12.
17	52-1.2-1.bmp	2.604	255	255	255	92.206	33.953	89.427	35.669	5.265	3.142	0.188	6.089	NaN	149
18	52-1.2-1.bmp	3.058	255	255	255	96.553	30.610	93.673	32.102	5.265	3.057	0.223	6.046	NaN	150
19	52-1.2-1.bmp	3.217	255	255	255	101.570	29.030	98.599	30.828	5.860	3.652	0.179	6.860	NaN	148
20	52-1.2-1.bmp	6.772	255	255	255	107.001	27.273	102.335	29.979	9.172	5.011	0.168	10.371	NaN	152